APC DIN Rail - Panel Mount UPS with Standard Battery 500VA 120V

DIN RAIL PANEL MOUNT UPS 500VA

APCSUA500PDRS SUA500PDRS APCSUA500PDRS
759.28 / EA
http://schema.org/OutOfStock
  • Country of Origin: Philippines
  • Output Voltage: 120 V
  • Warranty Length: 2 yr
24V DC UPS designed specifically for industrial automation and controls. This 325W UPS comes with hardwire input/output and can be mounted on a DIN Rail or any control panel. It features temperature-compensated battery charging that helps prolong the bat
QTY
  • Product Description
  • Features
  • Specifications
24V DC UPS designed specifically for industrial automation and controls. This 325W UPS comes with hardwire input/output and can be mounted on a DIN Rail or any control panel. It features temperature-compensated battery charging that helps prolong the bat
  • Number Of Input Connectors
    • 1 Hard Wire 3-wire (1PH+N+G)
  • Output Frequency Sync To Mains
    • 47...53 Hz for 50 Hz nominal sync to mains
    • 57...63 Hz for 60 Hz nominal sync to mains
    • 57...63 Hz for 60 Hz nominal sync to ma
  • Prop 65
    • WARNING: This product can expose you to chemicals including: Lead and lead compounds, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov
  • Carbon Footprint Of The Installation Phase A5
    • 1.3286913582
    • 1 kg CO2 eq.
  • Carbon Footprint Of The End Of Life Phase C1 To C4
    • 7 kg CO2 eq.
    • 6.9692668576
  • Provided Equipment
    • CD with software
    • Documentation CD
    • Installation guide
    • Smart UPS signalling RS-232 cable
  • Battery Power In VAH
    • 120 VAh runtime
  • Carbon Footprint Of The Manufacturing Phase A1 To A3
    • 191 kg CO2 eq.
    • 191.3224100291
  • Battery Charge Power Watts
    • 60 W rated
  • Persona Type Names
    • Consumer
    • IT Channel Partner
  • Alarm
    • alarm when on battery : distinctive low battery alarm : overload continuous tone alarm
    • alarm when on battery : distinctive low battery alarm : overload continuous tone
  • Carbon Footprint Of The Use Phase B2 B3 B4 B6
    • 295 kg CO2 eq.
    • 294.6147179487
  • Persona Type Ids
    • EUA
    • VR
  • Carbon Footprint Of The Distribution Phase A4
    • 4.5705466485
    • 5 kg CO2 eq.
  • Output Connector Type
    • Hard Wire 3-wire (H N + E) for 1 zone(s)
  • Input Frequency
    • 50/60 Hz +/- 3 Hz auto-sensing
  • Efficiency At Full Load
    • 75...154 V adjustable
    • 82...144 V
    • 94 % full load)
  • Complementary Attributes
    • Curve Load Maximum : 100 %
    • Curve X Axis Maximum : 100 %
    • Curve X Axis Minimum : 0 %
    • Curve Y Axis Maximum : 100 %
    • Curve Y Axis Minimum : 50 %
    • Maximum Configurable Power In VA : 500 VA
  • Important Information Attributes
    • B2B Bullet Point 1 : 500VA/325W DIN Rail UPS with hardwire input/output.
    • B2B Bullet Point 2 : Emergency power off switch for immediate disconnect if needed.
    • B2B Bullet Point 3 : SmartSlot for optional remote management and monitoring of the UPS and connected load.
    • B2B Bullet Point 4 : 2-year warranty on UPS and internal batteries.
    • Local Data Status : Publishable
    • Local Publishable Date : 8/20/2025
    • HTML Description : APC DIN Rail - Panel Mount UPS with Standard Battery 500VA 120VAPC Industrial,325 Watts /500 VA,Input 120V /Output 120V, Interface Port DB-9 RS-232, SmartSlotIncludes: CD with software, Documentation CD
    • Manufacturer : American Power Conversion Corp. (APC)
    • Device Type : UPS - Network and Server
    • Serviceability : No
    • Traceability : Yes
    • Field Service Division : SPIBS
    • Manufacturing Carbon Footprint : 191.32241
    • Distribution Carbon Footprint : 4.570546649
    • Installation Carbon Footprint : 1.328691358
    • Use Carbon Footprint : 294.6147179
    • End Of Life Carbon Footprint : 6.969266858
    • Legacy WEEE Scope : In
    • WEEE Product Category : 5
    • Scope Perimeter : At least in Europe
    • EOLI Availability Display : Yes
    • End Of Life Doc Ref : ENVEOLI1612028_EN
    • Reach Full Compliance Status : Reference contains Substances of Very High Concern above the threshold
    • Reach Full Compliance Status Id : CONTAINS_SVHC
    • Reach Compliance Directive : Reference contains Substances of Very High Concern above the threshold
    • ROHS EUR In Scope : Yes
    • ROHS EUR Status : Compliant with Exemptions
    • ROHS EUR Conformity Date : 1920
    • ROHS EUR Full Compliance Status : Compliant with Exemptions
    • ROHS EUR Full Compliance Status Id : COMPLIANT_WITH_EXEMPTIONS
    • Green Premium Status For Reporting : Green Premium product
    • With Recycled Cardboard : No
    • Without Single Use Plastic : No
    • Product Contributes To Saved And Avoided Emissions : No
    • Return Indicator : Y
    • WD Status : L - LOB initialized
    • Dangerous Goods Code : BATTERIES WET NON SPILLABLE (ELECTRIC STORAGE or LEAD ACID)
    • Tier Id : 3
    • Tier : 3
    • Function Option Id : STANDARD
    • Function Option : Standard
    • Market Segmentation Id : RESIDENTIAL
    • Market Segmentation : Residential
    • Curve Equation : efficiency
    • Curve Load Maximum : 100%
    • Curve X Axis Maximum : 100%
    • Curve X Axis Minimum : 0%
    • Curve X Axis Title : load
    • Curve X Axis Units : percentage
    • Curve Y Axis Maximum : 100%
    • Curve Y Axis Minimum : 50%
    • Curve Y Axis Title : efficiency
    • Curve Y Axis Units : percentage
    • Energy Efficiency Optimized : Energy efficient product
    • Extendable Run Time : 0
    • Filtering : Full time multi-pole noise filtering : 0.3% IEEE surge let-through : zero clamping response time : m
    • Graph Display : 1
    • Liquid Electrolyte Value : 0
    • Maximum Configurable Power In VA : 500 VA
    • Mounting Preference : no preference
    • Number Of Power Module Filled Slots : 0
    • Number Of Power Module Free Slots : 0
    • Number Of Tare Power : 15 W
    • Package Weight Lbs : 13.32 kg
    • Product Availability : Stock - Normally stocked in distribution facility
    • Product Or Component Type : uninterruptible power supply (UPS)
    • RBC Quantity : 1
    • Redundant : No
    • Returnability : Yes
    • Show Note Op Temperature : No
    • Surge Energy Rating : 540 J
    • Sustainable Packaging : No
    • Total Lifecycle Carbon Footprint : 499 kg CO2 eq.
    • Two Post Mountable : 0
    • Typical Recharge Time : 2 h
    • Ups Size : WS
    • Usb Compatible : No
    • Waveform Type : Sine wave
    • Weee Label : The product must be disposed on European Union markets following specific waste collection and never end up in rubbish bins.
    • Emergency Power Off EPO : Yes
    • Max Configurable Power Watts : 325 W
    • Carbon Footprint Kg Co2 Eq Total Life Cycle : 498.8056328
    • Relationship Type : Compatible relationship
    • Pep Code : ENVPEP1612028_EN
    • Pep Verification Date : 10/25/2025
    • PCR Version : PEP-PCR-ed4-2021 09 06
    • PSR Version : PSR-0010-ed1.1-EN-2015 10 16
    • Type Of Verification For The Pep : Independent internal review
    • Product Weight In G : 13320
    • Functional Unit Description : The functional unit is the transmission of electricity between electrical/electronic equipment and a power source for a distance of 2.5m for up to 10A of current at 230V AC
    • Functional Unit Quantity : 1
    • Functional Unit Unit : unit
    • Reference Lifetime In Y : 20
    • Energy Consumption On Product Lifetime In Kwh : 0
    • Energy Model Manufacturing A1 A3 : Electricity Mix; High voltage; 2020; Asia Pacific, APAC
    • Energy Model Installation A5 : No energy used
    • Energy Model Use B6 : Electricity Mix; Low voltage; 2020; Europe, EU-27
    • Energy Model End Of Life C1 C4 : Global, European and French datasets are used.
    • Recyclability Potential In : 51
    • Acidification Ap Mole Of H Equiv Total Life Cycle : 0
    • Acidification Ap Mole Of H Equiv Manufacturing A1 A3 : 0
    • Acidification Ap Mole Of H Equiv Distribution A4 : 0
    • Acidification Ap Mole Of H Equiv Installation A5 : 0
    • Acidification Ap Mole Of H Equiv Maintenance B2 : 0
    • Acidification Ap Mole Of H Equiv Repair B3 : 0
    • Acidification Ap Mole Of H Equiv Replacement B4 : 0
    • Acidification Ap Mole Of H Equiv Operational Energy Use B6 : 0
    • Acidification Ap Mole Of H Equiv End Of Life C1 C4 : 0
    • Acidification Ap Mole Of H Equiv Benefits Loads Beyond System Boundaries D : 0
    • Biogenic Carbon Content Of The Associated Packaging Kg Of C Total Life Cycle : 0
    • Biogenic Carbon Content Of The Associated Packaging Kg Of C Manufacturing A1 A3 : 0
    • Biogenic Carbon Content Of The Associated Packaging Kg Of C Distribution A4 : 0
    • Biogenic Carbon Content Of The Associated Packaging Kg Of C Installation A5 : 0
    • Biogenic Carbon Content Of The Associated Packaging Kg Of C Maintenance B2 : 0
    • Biogenic Carbon Content Of The Associated Packaging Kg Of C Repair B3 : 0
    • Biogenic Carbon Content Of The Associated Packaging Kg Of C Replacement B4 : 0
    • Biogenic Carbon Content Of The Associated Packaging Kg Of C Operational Energy Use B6 : 0
    • Biogenic Carbon Content Of The Associated Packaging Kg Of C End Of Life C1 C4 : 0
    • Biogenic Carbon Content Of The Associated Packaging Kg Of C Benefits Loads Beyond System Boundaries D : 0
    • Biogenic Carbon Content Of The Product Kg Of C Total Life Cycle : 0
    • Biogenic Carbon Content Of The Product Kg Of C Manufacturing A1 A3 : 0
    • Biogenic Carbon Content Of The Product Kg Of C Distribution A4 : 0
    • Biogenic Carbon Content Of The Product Kg Of C Installation A5 : 0
    • Biogenic Carbon Content Of The Product Kg Of C Maintenance B2 : 0
    • Biogenic Carbon Content Of The Product Kg Of C Repair B3 : 0
    • Biogenic Carbon Content Of The Product Kg Of C Replacement B4 : 0
    • Biogenic Carbon Content Of The Product Kg Of C Operational Energy Use B6 : 0
    • Biogenic Carbon Content Of The Product Kg Of C End Of Life C1 C4 : 0
    • Biogenic Carbon Content Of The Product Kg Of C Benefits Loads Beyond System Boundaries D : 0
    • Climate Change Biogenics Kg Co2 Eq Total Life Cycle : 0
    • Climate Change Biogenics Kg Co2 Eq Manufacturing A1 A3 : 0
    • Climate Change Biogenics Kg Co2 Eq Distribution A4 : 0
    • Climate Change Biogenics Kg Co2 Eq Installation A5 : 0
    • Climate Change Biogenics Kg Co2 Eq Maintenance B2 : 0
    • Climate Change Biogenics Kg Co2 Eq Repair B3 : 0
    • Climate Change Biogenics Kg Co2 Eq Replacement B4 : 0
    • Climate Change Biogenics Kg Co2 Eq Operational Energy Use B6 : 0
    • Climate Change Biogenics Kg Co2 Eq End Of Life C1 C4 : 0
    • Climate Change Biogenics Kg Co2 Eq Benefits Loads Beyond System Boundaries D : 0
    • Climate Change Fossil Fuels Kg Co2 Eq Total Life Cycle : 0
    • Climate Change Fossil Fuels Kg Co2 Eq Manufacturing A1 A3 : 0
    • Climate Change Fossil Fuels Kg Co2 Eq Distribution A4 : 0
    • Climate Change Fossil Fuels Kg Co2 Eq Installation A5 : 0
    • Climate Change Fossil Fuels Kg Co2 Eq Maintenance B2 : 0
    • Climate Change Fossil Fuels Kg Co2 Eq Repair B3 : 0
    • Climate Change Fossil Fuels Kg Co2 Eq Replacement B4 : 0
    • Climate Change Fossil Fuels Kg Co2 Eq Operational Energy Use B6 : 0
    • Climate Change Fossil Fuels Kg Co2 Eq End Of Life C1 C4 : 0
    • Climate Change Fossil Fuels Kg Co2 Eq Benefits Loads Beyond System Boundaries D : 0
    • Climate Change Total Kg Co2 Eq Total Life Cycle : 498.8056328
    • Climate Change Total Kg Co2 Eq Manufacturing A1 A3 : 191.32241
    • Climate Change Total Kg Co2 Eq Distribution A4 : 4.570546649
    • Climate Change Total Kg Co2 Eq Installation A5 : 1.328691358
    • Climate Change Total Kg Co2 Eq Maintenance B2 : 0
    • Climate Change Total Kg Co2 Eq Repair B3 : 0
    • Climate Change Total Kg Co2 Eq Replacement B4 : 0
    • Climate Change Total Kg Co2 Eq Operational Energy Use B6 : 294.6147179
    • Climate Change Total Kg Co2 Eq End Of Life C1 C4 : 6.969266858
    • Climate Change Total Kg Co2 Eq Benefits Loads Beyond System Boundaries D : 0
    • Components For Re Use Kg Total Life Cycle : 0
    • Components For Re Use Kg Manufacturing A1 A3 : 0
    • Components For Re Use Kg Distribution A4 : 0
    • Components For Re Use Kg Installation A5 : 0
    • Components For Re Use Kg Maintenance B2 : 0
    • Components For Re Use Kg Repair B3 : 0
    • Components For Re Use Kg Replacement B4 : 0
    • Components For Re Use Kg Operational Energy Use B6 : 0
    • Components For Re Use Kg End Of Life C1 C4 : 0
    • Components For Re Use Kg Benefits Loads Beyond System Boundaries D : 0
    • Depletion Of Abiotic Resources Elements Kg Equivalent Sb Total Life Cycle : 0
    • Depletion Of Abiotic Resources Elements Kg Equivalent Sb Manufacturing A1 A3 : 0
    • Depletion Of Abiotic Resources Elements Kg Equivalent Sb Distribution A4 : 0
    • Depletion Of Abiotic Resources Elements Kg Equivalent Sb Installation A5 : 0
    • Depletion Of Abiotic Resources Elements Kg Equivalent Sb Maintenance B2 : 0
    • Depletion Of Abiotic Resources Elements Kg Equivalent Sb Repair B3 : 0
    • Depletion Of Abiotic Resources Elements Kg Equivalent Sb Replacement B4 : 0
    • Depletion Of Abiotic Resources Elements Kg Equivalent Sb Operational Energy Use B6 : 0
    • Depletion Of Abiotic Resources Elements Kg Equivalent Sb End Of Life C1 C4 : 0
    • Depletion Of Abiotic Resources Elements Kg Equivalent Sb Benefits Loads Beyond System Boundaries D : 0
    • Depletion Of Abiotic Resources Fossil Fuels Mj Total Life Cycle : 0
    • Depletion Of Abiotic Resources Fossil Fuels Mj Manufacturing A1 A3 : 0
    • Depletion Of Abiotic Resources Fossil Fuels Mj Distribution A4 : 0
    • Depletion Of Abiotic Resources Fossil Fuels Mj Installation A5 : 0
    • Depletion Of Abiotic Resources Fossil Fuels Mj Maintenance B2 : 0
    • Depletion Of Abiotic Resources Fossil Fuels Mj Repair B3 : 0
    • Depletion Of Abiotic Resources Fossil Fuels Mj Replacement B4 : 0
    • Depletion Of Abiotic Resources Fossil Fuels Mj Operational Energy Use B6 : 0
    • Depletion Of Abiotic Resources Fossil Fuels Mj End Of Life C1 C4 : 0
    • Depletion Of Abiotic Resources Fossil Fuels Mj Benefits Loads Beyond System Boundaries D : 0
    • Ecotoxicity Fresh Water Ctue Total Life Cycle : 0
    • Ecotoxicity Fresh Water Ctue Manufacturing A1 A3 : 0
    • Ecotoxicity Fresh Water Ctue Distribution A4 : 0
    • Ecotoxicity Fresh Water Ctue Installation A5 : 0
    • Ecotoxicity Fresh Water Ctue Maintenance B2 : 0
    • Ecotoxicity Fresh Water Ctue Repair B3 : 0
    • Ecotoxicity Fresh Water Ctue Replacement B4 : 0
    • Ecotoxicity Fresh Water Ctue Operational Energy Use B6 : 0
    • Ecotoxicity Fresh Water Ctue End Of Life C1 C4 : 0
    • Ecotoxicity Fresh Water Ctue Benefits Loads Beyond System Boundaries D : 0
    • Emission Of Fine Particles Incidence Of Diseases Total Life Cycle : 0
    • Emission Of Fine Particles Incidence Of Diseases Manufacturing A1 A3 : 0
    • Emission Of Fine Particles Incidence Of Diseases Distribution A4 : 0
    • Emission Of Fine Particles Incidence Of Diseases Installation A5 : 0
    • Emission Of Fine Particles Incidence Of Diseases Maintenance B2 : 0
    • Emission Of Fine Particles Incidence Of Diseases Repair B3 : 0
    • Emission Of Fine Particles Incidence Of Diseases Replacement B4 : 0
    • Emission Of Fine Particles Incidence Of Diseases Operational Energy Use B6 : 0
    • Emission Of Fine Particles Incidence Of Diseases End Of Life C1 C4 : 0
    • Emission Of Fine Particles Incidence Of Diseases Benefits Loads Beyond System Boundaries D : 0
    • Exported Energy Mj By Energy Vector Total Life Cycle : 0
    • Exported Energy Mj By Energy Vector Manufacturing A1 A3 : 0
    • Exported Energy Mj By Energy Vector Distribution A4 : 0
    • Exported Energy Mj By Energy Vector Installation A5 : 0
    • Exported Energy Mj By Energy Vector Maintenance B2 : 0
    • Exported Energy Mj By Energy Vector Repair B3 : 0
    • Exported Energy Mj By Energy Vector Replacement B4 : 0
    • Exported Energy Mj By Energy Vector Operational Energy Use B6 : 0
    • Exported Energy Mj By Energy Vector End Of Life C1 C4 : 0
    • Exported Energy Mj By Energy Vector Benefits Loads Beyond System Boundaries D : 0
    • Freshwater Eutrophication Kg P Eq Total Life Cycle : 0
    • Freshwater Eutrophication Kg P Eq Manufacturing A1 A3 : 0
    • Freshwater Eutrophication Kg P Eq Distribution A4 : 0
    • Freshwater Eutrophication Kg P Eq Installation A5 : 0
    • Freshwater Eutrophication Kg P Eq Maintenance B2 : 0
    • Freshwater Eutrophication Kg P Eq Repair B3 : 0
    • Freshwater Eutrophication Kg P Eq Replacement B4 : 0
    • Freshwater Eutrophication Kg P Eq Operational Energy Use B6 : 0
    • Freshwater Eutrophication Kg P Eq End Of Life C1 C4 : 0
    • Freshwater Eutrophication Kg P Eq Benefits Loads Beyond System Boundaries D : 0
    • Hazardous Waste Disposed Of Kg Total Life Cycle : 0
    • Hazardous Waste Disposed Of Kg Manufacturing A1 A3 : 0
    • Hazardous Waste Disposed Of Kg Distribution A4 : 0
    • Hazardous Waste Disposed Of Kg Installation A5 : 0
    • Hazardous Waste Disposed Of Kg Maintenance B2 : 0
    • Hazardous Waste Disposed Of Kg Repair B3 : 0
    • Hazardous Waste Disposed Of Kg Replacement B4 : 0
    • Hazardous Waste Disposed Of Kg Operational Energy Use B6 : 0
    • Hazardous Waste Disposed Of Kg End Of Life C1 C4 : 0
    • Hazardous Waste Disposed Of Kg Benefits Loads Beyond System Boundaries D : 0
    • Human Toxicity Carcinogenic Effects Ctuh Total Life Cycle : 0
    • Human Toxicity Carcinogenic Effects Ctuh Manufacturing A1 A3 : 0
    • Human Toxicity Carcinogenic Effects Ctuh Distribution A4 : 0
    • Human Toxicity Carcinogenic Effects Ctuh Installation A5 : 0
    • Human Toxicity Carcinogenic Effects Ctuh Maintenance B2 : 0
    • Human Toxicity Carcinogenic Effects Ctuh Repair B3 : 0
    • Human Toxicity Carcinogenic Effects Ctuh Replacement B4 : 0
    • Human Toxicity Carcinogenic Effects Ctuh Operational Energy Use B6 : 0
    • Human Toxicity Carcinogenic Effects Ctuh End Of Life C1 C4 : 0
    • Human Toxicity Carcinogenic Effects Ctuh Benefits Loads Beyond System Boundaries D : 0
    • Human Toxicity Non Carcinogenic Effects Ctuh Total Life Cycle : 0
    • Human Toxicity Non Carcinogenic Effects Ctuh Manufacturing A1 A3 : 0
    • Human Toxicity Non Carcinogenic Effects Ctuh Distribution A4 : 0
    • Human Toxicity Non Carcinogenic Effects Ctuh Installation A5 : 0
    • Human Toxicity Non Carcinogenic Effects Ctuh Maintenance B2 : 0
    • Human Toxicity Non Carcinogenic Effects Ctuh Repair B3 : 0
    • Human Toxicity Non Carcinogenic Effects Ctuh Replacement B4 : 0
    • Human Toxicity Non Carcinogenic Effects Ctuh Operational Energy Use B6 : 0
    • Human Toxicity Non Carcinogenic Effects Ctuh End Of Life C1 C4 : 0
    • Human Toxicity Non Carcinogenic Effects Ctuh Benefits Loads Beyond System Boundaries D : 0
    • Impacts Related To Land Use Soil Quality Total Life Cycle : 0
    • Impacts Related To Land Use Soil Quality Manufacturing A1 A3 : 0
    • Impacts Related To Land Use Soil Quality Distribution A4 : 0
    • Impacts Related To Land Use Soil Quality Installation A5 : 0
    • Impacts Related To Land Use Soil Quality Maintenance B2 : 0
    • Impacts Related To Land Use Soil Quality Repair B3 : 0
    • Impacts Related To Land Use Soil Quality Replacement B4 : 0
    • Impacts Related To Land Use Soil Quality Operational Energy Use B6 : 0
    • Impacts Related To Land Use Soil Quality End Of Life C1 C4 : 0
    • Impacts Related To Land Use Soil Quality Benefits Loads Beyond System Boundaries D : 0
    • Ionizing Radiation Human Health Kbq Of U235 Equiv Total Life Cycle : 0
    • Ionizing Radiation Human Health Kbq Of U235 Equiv Manufacturing A1 A3 : 0
    • Ionizing Radiation Human Health Kbq Of U235 Equiv Distribution A4 : 0
    • Ionizing Radiation Human Health Kbq Of U235 Equiv Installation A5 : 0
    • Ionizing Radiation Human Health Kbq Of U235 Equiv Maintenance B2 : 0
    • Ionizing Radiation Human Health Kbq Of U235 Equiv Repair B3 : 0
    • Ionizing Radiation Human Health Kbq Of U235 Equiv Replacement B4 : 0
    • Ionizing Radiation Human Health Kbq Of U235 Equiv Operational Energy Use B6 : 0
    • Ionizing Radiation Human Health Kbq Of U235 Equiv End Of Life C1 C4 : 0
    • Ionizing Radiation Human Health Kbq Of U235 Equiv Benefits Loads Beyond System Boundaries D : 0
    • Marine Aquatic Eutrophication Kg Of N Equiv Total Life Cycle : 0
    • Marine Aquatic Eutrophication Kg Of N Equiv Manufacturing A1 A3 : 0
    • Marine Aquatic Eutrophication Kg Of N Equiv Distribution A4 : 0
    • Marine Aquatic Eutrophication Kg Of N Equiv Installation A5 : 0
    • Marine Aquatic Eutrophication Kg Of N Equiv Maintenance B2 : 0
    • Marine Aquatic Eutrophication Kg Of N Equiv Repair B3 : 0
    • Marine Aquatic Eutrophication Kg Of N Equiv Replacement B4 : 0
    • Marine Aquatic Eutrophication Kg Of N Equiv Operational Energy Use B6 : 0
    • Marine Aquatic Eutrophication Kg Of N Equiv End Of Life C1 C4 : 0
    • Marine Aquatic Eutrophication Kg Of N Equiv Benefits Loads Beyond System Boundaries D : 0
    • Materials For Energy Recovery Kg Total Life Cycle : 0
    • Materials For Energy Recovery Kg Manufacturing A1 A3 : 0
    • Materials For Energy Recovery Kg Distribution A4 : 0
    • Materials For Energy Recovery Kg Installation A5 : 0
    • Materials For Energy Recovery Kg Maintenance B2 : 0
    • Materials For Energy Recovery Kg Repair B3 : 0
    • Materials For Energy Recovery Kg Replacement B4 : 0
    • Materials For Energy Recovery Kg Operational Energy Use B6 : 0
    • Materials For Energy Recovery Kg End Of Life C1 C4 : 0
    • Materials For Energy Recovery Kg Benefits Loads Beyond System Boundaries D : 0
    • Materials For Recycling Kg Total Life Cycle : 0
    • Materials For Recycling Kg Manufacturing A1 A3 : 0
    • Materials For Recycling Kg Distribution A4 : 0
    • Materials For Recycling Kg Installation A5 : 0
    • Materials For Recycling Kg Maintenance B2 : 0
    • Materials For Recycling Kg Repair B3 : 0
    • Materials For Recycling Kg Replacement B4 : 0
    • Materials For Recycling Kg Operational Energy Use B6 : 0
    • Materials For Recycling Kg End Of Life C1 C4 : 0
    • Materials For Recycling Kg Benefits Loads Beyond System Boundaries D : 0
    • Net Use Of Fresh Water M3 Total Life Cycle : 0
    • Net Use Of Fresh Water M3 Manufacturing A1 A3 : 0
    • Net Use Of Fresh Water M3 Distribution A4 : 0
    • Net Use Of Fresh Water M3 Installation A5 : 0
    • Net Use Of Fresh Water M3 Maintenance B2 : 0
    • Net Use Of Fresh Water M3 Repair B3 : 0
    • Net Use Of Fresh Water M3 Replacement B4 : 0
    • Net Use Of Fresh Water M3 Operational Energy Use B6 : 0
    • Net Use Of Fresh Water M3 End Of Life C1 C4 : 0
    • Net Use Of Fresh Water M3 Benefits Loads Beyond System Boundaries D : 0
    • Non Hazardous Waste Disposed Of Kg Total Life Cycle : 0
    • Non Hazardous Waste Disposed Of Kg Manufacturing A1 A3 : 0
    • Non Hazardous Waste Disposed Of Kg Distribution A4 : 0
    • Non Hazardous Waste Disposed Of Kg Installation A5 : 0
    • Non Hazardous Waste Disposed Of Kg Maintenance B2 : 0
    • Non Hazardous Waste Disposed Of Kg Repair B3 : 0
    • Non Hazardous Waste Disposed Of Kg Replacement B4 : 0
    • Non Hazardous Waste Disposed Of Kg Operational Energy Use B6 : 0
    • Non Hazardous Waste Disposed Of Kg End Of Life C1 C4 : 0
    • Non Hazardous Waste Disposed Of Kg Benefits Loads Beyond System Boundaries D : 0
    • Ozone Depletion Kg Equivalent Cfc 11 Total Life Cycle : 0
    • Ozone Depletion Kg Equivalent Cfc 11 Manufacturing A1 A3 : 0
    • Ozone Depletion Kg Equivalent Cfc 11 Distribution A4 : 0
    • Ozone Depletion Kg Equivalent Cfc 11 Installation A5 : 0
    • Ozone Depletion Kg Equivalent Cfc 11 Maintenance B2 : 0
    • Ozone Depletion Kg Equivalent Cfc 11 Repair B3 : 0
    • Ozone Depletion Kg Equivalent Cfc 11 Replacement B4 : 0
    • Ozone Depletion Kg Equivalent Cfc 11 Operational Energy Use B6 : 0
    • Ozone Depletion Kg Equivalent Cfc 11 End Of Life C1 C4 : 0
    • Ozone Depletion Kg Equivalent Cfc 11 Benefits Loads Beyond System Boundaries D : 0
    • Photochemical Ozone Formation Kg Of Nmvoc Equiv Total Life Cycle : 0
    • Photochemical Ozone Formation Kg Of Nmvoc Equiv Manufacturing A1 A3 : 0
    • Photochemical Ozone Formation Kg Of Nmvoc Equiv Distribution A4 : 0
    • Photochemical Ozone Formation Kg Of Nmvoc Equiv Installation A5 : 0
    • Photochemical Ozone Formation Kg Of Nmvoc Equiv Maintenance B2 : 0
    • Photochemical Ozone Formation Kg Of Nmvoc Equiv Repair B3 : 0
    • Photochemical Ozone Formation Kg Of Nmvoc Equiv Replacement B4 : 0
    • Photochemical Ozone Formation Kg Of Nmvoc Equiv Operational Energy Use B6 : 0
    • Photochemical Ozone Formation Kg Of Nmvoc Equiv End Of Life C1 C4 : 0
    • Photochemical Ozone Formation Kg Of Nmvoc Equiv Benefits Loads Beyond System Boundaries D : 0
    • Radioactive Waste Disposed Of Kg Total Life Cycle : 0
    • Radioactive Waste Disposed Of Kg Manufacturing A1 A3 : 0
    • Radioactive Waste Disposed Of Kg Distribution A4 : 0
    • Radioactive Waste Disposed Of Kg Installation A5 : 0
    • Radioactive Waste Disposed Of Kg Maintenance B2 : 0
    • Radioactive Waste Disposed Of Kg Repair B3 : 0
    • Radioactive Waste Disposed Of Kg Replacement B4 : 0
    • Radioactive Waste Disposed Of Kg Operational Energy Use B6 : 0
    • Radioactive Waste Disposed Of Kg End Of Life C1 C4 : 0
    • Radioactive Waste Disposed Of Kg Benefits Loads Beyond System Boundaries D : 0
    • Terrestrial Eutrophication Mole Of N Equiv Total Life Cycle : 0
    • Terrestrial Eutrophication Mole Of N Equiv Manufacturing A1 A3 : 0
    • Terrestrial Eutrophication Mole Of N Equiv Distribution A4 : 0
    • Terrestrial Eutrophication Mole Of N Equiv Installation A5 : 0
    • Terrestrial Eutrophication Mole Of N Equiv Maintenance B2 : 0
    • Terrestrial Eutrophication Mole Of N Equiv Repair B3 : 0
    • Terrestrial Eutrophication Mole Of N Equiv Replacement B4 : 0
    • Terrestrial Eutrophication Mole Of N Equiv Operational Energy Use B6 : 0
    • Terrestrial Eutrophication Mole Of N Equiv End Of Life C1 C4 : 0
    • Terrestrial Eutrophication Mole Of N Equiv Benefits Loads Beyond System Boundaries D : 0
    • Total Use Of Non Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Total Life Cycle : 0
    • Total Use Of Non Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Manufacturing A1 A3 : 0
    • Total Use Of Non Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Distribution A4 : 0
    • Total Use Of Non Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Installation A5 : 0
    • Total Use Of Non Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Maintenance B2 : 0
    • Total Use Of Non Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Repair B3 : 0
    • Total Use Of Non Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Replacement B4 : 0
    • Total Use Of Non Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Operational Energy Use B6 : 0
    • Total Use Of Non Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj End Of Life C1 C4 : 0
    • Total Use Of Non Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Benefits Loads Beyond System Boundaries D : 0
    • Total Use Of Primary Energy During The Life Cycle Mj Total Life Cycle : 0
    • Total Use Of Primary Energy During The Life Cycle Mj Manufacturing A1 A3 : 0
    • Total Use Of Primary Energy During The Life Cycle Mj Distribution A4 : 0
    • Total Use Of Primary Energy During The Life Cycle Mj Installation A5 : 0
    • Total Use Of Primary Energy During The Life Cycle Mj Maintenance B2 : 0
    • Total Use Of Primary Energy During The Life Cycle Mj Repair B3 : 0
    • Total Use Of Primary Energy During The Life Cycle Mj Replacement B4 : 0
    • Total Use Of Primary Energy During The Life Cycle Mj Operational Energy Use B6 : 0
    • Total Use Of Primary Energy During The Life Cycle Mj End Of Life C1 C4 : 0
    • Total Use Of Primary Energy During The Life Cycle Mj Benefits Loads Beyond System Boundaries D : 0
    • Total Use Of Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Total Life Cycle : 0
    • Total Use Of Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Manufacturing A1 A3 : 0
    • Total Use Of Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Distribution A4 : 0
    • Total Use Of Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Installation A5 : 0
    • Total Use Of Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Maintenance B2 : 0
    • Total Use Of Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Repair B3 : 0
    • Total Use Of Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Replacement B4 : 0
    • Total Use Of Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Operational Energy Use B6 : 0
    • Total Use Of Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj End Of Life C1 C4 : 0
    • Total Use Of Renewable Primary Energy Resources Primary Energy And Primary Energy Resources Used As Raw Materials Mj Benefits Loads Beyond System Boundaries D : 0
    • Use Of Non Renewable Primary Energy Resources Used As Raw Materials Mj Total Life Cycle : 0
    • Use Of Non Renewable Primary Energy Resources Used As Raw Materials Mj Manufacturing A1 A3 : 0
    • Use Of Non Renewable Primary Energy Resources Used As Raw Materials Mj Distribution A4 : 0
    • Use Of Non Renewable Primary Energy Resources Used As Raw Materials Mj Installation A5 : 0
    • Use Of Non Renewable Primary Energy Resources Used As Raw Materials Mj Maintenance B2 : 0
    • Use Of Non Renewable Primary Energy Resources Used As Raw Materials Mj Repair B3 : 0
    • Use Of Non Renewable Primary Energy Resources Used As Raw Materials Mj Replacement B4 : 0
    • Use Of Non Renewable Primary Energy Resources Used As Raw Materials Mj Operational Energy Use B6 : 0
    • Use Of Non Renewable Primary Energy Resources Used As Raw Materials Mj End Of Life C1 C4 : 0
    • Use Of Non Renewable Primary Energy Resources Used As Raw Materials Mj Benefits Loads Beyond System Boundaries D : 0
    • Use Of Non Renewable Primary Energy Excluding Non Renewable Primary Energy Resources Used As Raw Materials Mj Total Life Cycle : 0
    • Use Of Non Renewable Primary Energy Excluding Non Renewable Primary Energy Resources Used As Raw Materials Mj Manufacturing A1 A3 : 0
    • Use Of Non Renewable Primary Energy Excluding Non Renewable Primary Energy Resources Used As Raw Materials Mj Distribution A4 : 0
    • Use Of Non Renewable Primary Energy Excluding Non Renewable Primary Energy Resources Used As Raw Materials Mj Installation A5 : 0
    • Use Of Non Renewable Primary Energy Excluding Non Renewable Primary Energy Resources Used As Raw Materials Mj Maintenance B2 : 0
    • Use Of Non Renewable Primary Energy Excluding Non Renewable Primary Energy Resources Used As Raw Materials Mj Repair B3 : 0
    • Use Of Non Renewable Primary Energy Excluding Non Renewable Primary Energy Resources Used As Raw Materials Mj Replacement B4 : 0
    • Use Of Non Renewable Primary Energy Excluding Non Renewable Primary Energy Resources Used As Raw Materials Mj Operational Energy Use B6 : 0
    • Use Of Non Renewable Primary Energy Excluding Non Renewable Primary Energy Resources Used As Raw Materials Mj End Of Life C1 C4 : 0
    • Use Of Non Renewable Primary Energy Excluding Non Renewable Primary Energy Resources Used As Raw Materials Mj Benefits Loads Beyond System Boundaries D : 0
    • Use Of Non Renewable Secondary Fuels Mj Total Life Cycle : 0
    • Use Of Non Renewable Secondary Fuels Mj Manufacturing A1 A3 : 0
    • Use Of Non Renewable Secondary Fuels Mj Distribution A4 : 0
    • Use Of Non Renewable Secondary Fuels Mj Installation A5 : 0
    • Use Of Non Renewable Secondary Fuels Mj Maintenance B2 : 0
    • Use Of Non Renewable Secondary Fuels Mj Repair B3 : 0
    • Use Of Non Renewable Secondary Fuels Mj Replacement B4 : 0
    • Use Of Non Renewable Secondary Fuels Mj Operational Energy Use B6 : 0
    • Use Of Non Renewable Secondary Fuels Mj End Of Life C1 C4 : 0
    • Use Of Non Renewable Secondary Fuels Mj Benefits Loads Beyond System Boundaries D : 0
    • Use Of Renewable Primary Energy Resources Used As Raw Materials Mj Total Life Cycle : 0
    • Use Of Renewable Primary Energy Resources Used As Raw Materials Mj Manufacturing A1 A3 : 0
    • Use Of Renewable Primary Energy Resources Used As Raw Materials Mj Distribution A4 : 0
    • Use Of Renewable Primary Energy Resources Used As Raw Materials Mj Installation A5 : 0
    • Use Of Renewable Primary Energy Resources Used As Raw Materials Mj Maintenance B2 : 0
    • Use Of Renewable Primary Energy Resources Used As Raw Materials Mj Repair B3 : 0
    • Use Of Renewable Primary Energy Resources Used As Raw Materials Mj Replacement B4 : 0
    • Use Of Renewable Primary Energy Resources Used As Raw Materials Mj Operational Energy Use B6 : 0
    • Use Of Renewable Primary Energy Resources Used As Raw Materials Mj End Of Life C1 C4 : 0
    • Use Of Renewable Primary Energy Resources Used As Raw Materials Mj Benefits Loads Beyond System Boundaries D : 0
    • Use Of Renewable Primary Energy Excluding Renewable Primary Energy Resources Used As Raw Materials Mj Total Life Cycle : 0
    • Use Of Renewable Primary Energy Excluding Renewable Primary Energy Resources Used As Raw Materials Mj Manufacturing A1 A3 : 0
    • Use Of Renewable Primary Energy Excluding Renewable Primary Energy Resources Used As Raw Materials Mj Distribution A4 : 0
    • Use Of Renewable Primary Energy Excluding Renewable Primary Energy Resources Used As Raw Materials Mj Installation A5 : 0
    • Use Of Renewable Primary Energy Excluding Renewable Primary Energy Resources Used As Raw Materials Mj Maintenance B2 : 0
    • Use Of Renewable Primary Energy Excluding Renewable Primary Energy Resources Used As Raw Materials Mj Repair B3 : 0
    • Use Of Renewable Primary Energy Excluding Renewable Primary Energy Resources Used As Raw Materials Mj Replacement B4 : 0
    • Use Of Renewable Primary Energy Excluding Renewable Primary Energy Resources Used As Raw Materials Mj Operational Energy Use B6 : 0
    • Use Of Renewable Primary Energy Excluding Renewable Primary Energy Resources Used As Raw Materials Mj End Of Life C1 C4 : 0
    • Use Of Renewable Primary Energy Excluding Renewable Primary Energy Resources Used As Raw Materials Mj Benefits Loads Beyond System Boundaries D : 0
    • Use Of Renewable Secondary Fuels Mj Total Life Cycle : 0
    • Use Of Renewable Secondary Fuels Mj Manufacturing A1 A3 : 0
    • Use Of Renewable Secondary Fuels Mj Distribution A4 : 0
    • Use Of Renewable Secondary Fuels Mj Installation A5 : 0
    • Use Of Renewable Secondary Fuels Mj Maintenance B2 : 0
    • Use Of Renewable Secondary Fuels Mj Repair B3 : 0
    • Use Of Renewable Secondary Fuels Mj Replacement B4 : 0
    • Use Of Renewable Secondary Fuels Mj Operational Energy Use B6 : 0
    • Use Of Renewable Secondary Fuels Mj End Of Life C1 C4 : 0
    • Use Of Renewable Secondary Fuels Mj Benefits Loads Beyond System Boundaries D : 0
    • Use Of Secondary Materials Kg Total Life Cycle : 0
    • Use Of Secondary Materials Kg Manufacturing A1 A3 : 0
    • Use Of Secondary Materials Kg Distribution A4 : 0
    • Use Of Secondary Materials Kg Installation A5 : 0
    • Use Of Secondary Materials Kg Maintenance B2 : 0
    • Use Of Secondary Materials Kg Repair B3 : 0
    • Use Of Secondary Materials Kg Replacement B4 : 0
    • Use Of Secondary Materials Kg Operational Energy Use B6 : 0
    • Use Of Secondary Materials Kg End Of Life C1 C4 : 0
    • Use Of Secondary Materials Kg Benefits Loads Beyond System Boundaries D : 0
    • Water Use M3 Eq Total Life Cycle : 0
    • Water Use M3 Eq Manufacturing A1 A3 : 0
    • Water Use M3 Eq Distribution A4 : 0
    • Water Use M3 Eq Installation A5 : 0
    • Water Use M3 Eq Maintenance B2 : 0
    • Water Use M3 Eq Repair B3 : 0
    • Water Use M3 Eq Replacement B4 : 0
    • Water Use M3 Eq Operational Energy Use B6 : 0
    • Water Use M3 Eq End Of Life C1 C4 : 0
    • Water Use M3 Eq Benefits Loads Beyond System Boundaries D : 0
    • Warranty In Months : 24
  • General Attributes
    • Product Or Component Type : uninterruptible power supply (UPS)
  • Output Attributes
    • Harmonic Distortion : Less than 5%
    • Output Voltage : 120 V
  • Surge Protection And Filtering Attributes
    • Filtering : Full time multi-pole noise filtering : 0.3% IEEE surge let-through : zero clamping response time : m
    • Surge Energy Rating : 540 J
  • Environment Attributes
    • ROHS Exemption Information : Yes
    • Take Back : Yes
    • Recycled Metal Content At Cr Level : 0%
    • Mercury Free : Yes
    • Optimized Energy Efficiency : Energy efficient product
    • Carbon Footprint : 498.8056328
    • Circularity Profile : ENVEOLI1612028_EN
    • Environmental Disclosure : ENVPEP1612028_EN
    • EU ROHS Directive : Compliant with Exemptions
    • IP Degree Of Protection : IP20
    • Online Thermal Dissipation : 90 Btu/h
    • Packaging Made With Recycled Cardboard : No
    • Packaging Without Single Use Plastic : No
    • Reach Regulation : Reference contains Substances of Very High Concern above the threshold
    • Relative Humidity : 0-95 %
    • Storage Altitude : 0-50000 ft
    • Storage Relative Humidity : 0-95 %
    • Pep Code : ENVPEP1612028_EN
    • Pep Verification Date : 10/25/2025
    • PCR Version : PEP-PCR-ed4-2021 09 06
    • PSR Version : PSR-0010-ed1.1-EN-2015 10 16
    • Type Of Verification For The Pep : Independent internal review
  • Contractual Warranty Attributes
    • Warranty Period : 2 years repair or replace
    • Warranty : 2 years repair or replace
  • Input Attributes
    • Main Input Voltage : 120 V
  • Specifications
    • Country of Origin : Philippines
  • Batteries & Runtime Attributes
    • Removable Battery : USER_REPLACEABLE
    • Battery Curve : B
    • Battery Slots Empty : 1
    • Included Battery Modules : 1
    • Replacement Battery : APCRBC135